CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models

https://papers.cool/arxiv/2401.17043

Authors: Yuanjie Lyu ; Zhiyu Li ; Simin Niu ; Feiyu Xiong ; Bo Tang ; Wenjin Wang ; Hao Wu ; Huanyong Liu ; Tong Xu ; Enhong Chen

Summary: Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources. This method addresses common LLM limitations, including outdated information and the tendency to produce inaccurate "hallucinated" content. However, the evaluation of RAG systems is challenging, as existing benchmarks are limited in scope and diversity. Most of the current benchmarks predominantly assess question-answering applications, overlooking the broader spectrum of situations where RAG could prove advantageous. Moreover, they only evaluate the performance of the LLM component of the RAG pipeline in the experiments, and neglect the influence of the retrieval component and the external knowledge database. To address these issues, this paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios. Specifically, we have categorized the range of RAG applications into four distinct types-Create, Read, Update, and Delete (CRUD), each representing a unique use case. "Create" refers to scenarios requiring the generation of original, varied content. "Read" involves responding to intricate questions in knowledge-intensive situations. "Update" focuses on revising and rectifying inaccuracies or inconsistencies in pre-existing texts. "Delete" pertains to the task of summarizing extensive texts into more concise forms. For each of these CRUD categories, we have developed comprehensive datasets to evaluate the performance of RAG systems. We also analyze the effects of various components of the RAG system, such as the retriever, the context length, the knowledge base construction, and the LLM. Finally, we provide useful insights for optimizing the RAG technology for different scenarios.


Q: 这篇论文试图解决什么问题?

A: 这篇论文试图解决的问题是如何全面评估和优化检索增强生成(Retrieval-Augmented Generation, RAG)系统的性能。RAG是一种结合了大型语言模型(LLMs)和外部知识源的技术,旨在提高文本生成的准确性和可靠性。然而,现有的RAG系统评估基准存在局限性,主要关注于问答应用场景,忽视了RAG在其他应用场景中的潜力。此外,现有评估方法通常只关注LLMs部分,而忽略了检索组件和外部知识库对RAG系统性能的影响。

为了解决这些问题,论文提出了CRUD-RAG,这是一个全面的中文RAG基准,涵盖了创建(Create)、读取(Read)、更新(Update)和删除(Delete)四种RAG应用场景。CRUD-RAG旨在通过构建大规模和多样化的数据集,评估RAG系统在不同应用场景下的性能,并分析影响RAG系统性能的各种因素,如检索器、上下文长度、知识库构建和LLM。通过这些实验,论文提供了优化RAG技术以适应不同场景的有用见解。

Q: 有哪些相关研究?

A: 相关研究主要集中在以下几个方面:

  1. RAG技术的发展与应用:研究者们探讨了RAG技术如何结合检索和生成过程,以及它在不同领域(如法律、医疗、金融等)中的应用。这些研究强调了RAG在处理精确性和可靠性要求高的领域中的重要性。
  2. RAG基准的构建:为了有效评估RAG系统的性能,研究者们开发了不同的基准测试,如RGB和NQ,这些基准主要关注于问答任务。这些基准测试有助于理解RAG系统在特定任务上的表现。
  3. RAG系统的优化:研究者们致力于优化RAG系统的各个组件,包括检索模型、外部知识库的构建、以及语言模型。这些研究旨在提高RAG系统在处理检索内容时的精度和效率。
  4. RAG系统的评估方法:研究者们提出了不同的评估方法,包括基于参考的评估和无参考评估。这些方法旨在衡量RAG系统生成文本的准确性、相关性和一致性。
  5. RAG系统的挑战与局限性:研究者们还关注RAG系统面临的挑战,如生成幻觉内容(hallucinations)、知识过时问题,以及如何通过RAG技术来解决这些问题。
  6. RAG系统的实证研究:一些研究通过实证方法,如LangChain提供的基准任务,来评估RAG架构在特定场景下的表现,如处理结构化和半结构化数据的能力。

这些相关研究为CRUD-RAG基准的构建提供了理论基础和实践指导,帮助研究者们更好地理解和改进RAG技术。

Q: 论文如何解决这个问题?

A: 论文通过以下几个步骤来解决RAG系统评估的问题: