Diversify Question Generation with Retrieval-Augmented Style Transfer
https://papers.cool/arxiv/2310.14503
Authors: Qi Gou ; Zehua Xia ; Bowen Yu ; Haiyang Yu ; Fei Huang ; Yongbin Li ; Nguyen Cam-Tu
Summary: Given a textual passage and an answer, humans are able to ask questions with various expressions, but this ability is still challenging for most question generation (QG) systems. Existing solutions mainly focus on the internal knowledge within the given passage or the semantic word space for diverse content planning. These methods, however, have not considered the potential of external knowledge for expression diversity. To bridge this gap, we propose RAST, a framework for Retrieval-Augmented Style Transfer, where the objective is to utilize the style of diverse templates for question generation. For training RAST, we develop a novel Reinforcement Learning (RL) based approach that maximizes a weighted combination of diversity reward and consistency reward. Here, the consistency reward is computed by a Question-Answering (QA) model, whereas the diversity reward measures how much the final output mimics the retrieved template. Experimental results show that our method outperforms previous diversity-driven baselines on diversity while being comparable in terms of consistency scores. Our code is available at https://github.com/gouqi666/RAST.
Q: 这篇论文试图解决什么问题?
A: 这篇论文试图解决的问题是提高问题生成(Question Generation, QG)系统的多样性。在给定文本段落和答案的情况下,人类能够用多种不同的表达方式提出问题,但大多数现有的QG系统在生成多样化问题方面仍然面临挑战。现有的解决方案主要集中在利用给定段落内的内部知识或语义词空间进行多样化内容规划,但这些方法没有考虑外部知识对表达多样性的潜力。为了弥补这一差距,论文提出了一个名为RAST(Retrieval-Augmented Style Transfer)的框架,旨在利用多样化模板的风格来生成问题。通过这种方式,RAST旨在生成具有不同表达方式的问题,同时保持问题的一致性和相关性。
Q: 有哪些相关研究?
A: 相关研究可以分为几个主要类别:
这些相关研究为本文提出的RAST框架提供了背景和对比,展示了在QG领域中多样性和一致性之间平衡的不同尝试和方法。
Q: 论文如何解决这个问题?
A: 论文通过提出一个名为RAST(Retrieval-Augmented Style Transfer)的框架来解决这个问题,该框架包含以下几个关键组件和步骤: